Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Negl Trop Dis ; 18(4): e0011671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568912

RESUMO

BACKGROUND: Leptospirosis is the world's most common zoonotic disease. Mitigation and control rely on pathogen identification and understanding the roles of potential reservoirs in cycling and transmission. Underreporting and misdiagnosis obscure the magnitude of the problem and confound efforts to understand key epidemiological components. Difficulties in culturing hamper the use of serological diagnostics and delay the development of DNA detection methods. As a result, especially in complex ecosystems, we know very little about the importance of different mammalian host species in cycling and transmission to humans. METHODOLOGY/PRINCIPAL FINDINGS: We sampled dogs from five indigenous Kichwa communities living in the Yasuní National Park in the Ecuadorian Amazon basin. Blood and urine samples from domestic dogs were collected to assess the exposure of these animals to Leptospira and to identify the circulating species. Microscopic Agglutination Tests with a panel of 22 different serovars showed anti-leptospira antibodies in 36 sampled dogs (75%), and 7 serogroups were detected. Two DNA-based detection assays revealed pathogenic Leptospira DNA in 18 of 19 dog urine samples (94.7%). Amplicon sequencing and phylogenetic analysis of 16S rRNA and SecY genes from 15 urine samples revealed genetic diversity within two of three different Leptospira species: noguchii (n = 7), santarosai (n = 7), and interrogans (n = 1). CONCLUSIONS/SIGNIFICANCE: The high prevalence of antibodies and Leptospira DNA provides strong evidence for high rates of past and current infections. Such high prevalence has not been previously reported for dogs. These dogs live in the peridomestic environment in close contact with humans, yet they are free-ranging animals that interact with wildlife. This complex web of interactions may explain the diverse types of pathogenic Leptospira observed in this study. Our results suggest that domestic dogs are likely to play an important role in the cycling and transmission of Leptospira. Future studies in areas with complex ecoepidemiology will enable better parsing of the significance of genotypic, environmental, and host characteristics.


Assuntos
Leptospira , Leptospirose , Animais , Cães , Humanos , Ecossistema , Filogenia , RNA Ribossômico 16S/genética , Leptospirose/epidemiologia , Leptospirose/veterinária , Animais Selvagens , DNA , Mamíferos
2.
bioRxiv ; 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37786682

RESUMO

Background: Leptospirosis is the world's most common zoonotic disease. Mitigation and control rely on pathogen identification and understanding the roles of potential reservoirs in cycling and transmission. Underreporting and misdiagnosis obscure the magnitude of the problem and confound efforts to understand key epidemiological components. Difficulties in culturing hamper the use of serological diagnostics and delay the development of DNA detection methods. As a result, especially in complex ecosystems, we know very little about the importance of different mammalian host species in cycling and transmission to humans. Methodology/Principal Findings: We sampled five indigenous Kichwa communities living in the Yasuní National Park in the Ecuadorian Amazon basin. Blood and urine samples from domestic dogs were collected to assess the exposure of these animals to Leptospira, and to identify the circulating species. Microscopic Agglutination Tests with a panel of 22 different serovars showed anti-leptospira antibodies in 36 sampled dogs (75%), and 10 serotypes were detected. Two DNA-based detection assays revealed pathogenic Leptospira DNA in 18 of 19 dog urine samples (94.7%). Amplicon sequencing and phylogenetic analysis of 16s rDNA and SecY genes from 15 urine samples revealed genetic diversity within two of three different Leptospira species: noguchii (n=7), santarosai (n=7), and interrogans (n=1). Conclusions/Significance: The high prevalence of antibodies and Leptospira DNA provides strong evidence for high rates of past and current infections. Such high prevalence has not been previously reported for dogs. These dogs live in the peridomestic environment in close contact with humans, yet they are free-ranging animals that interact with wildlife. This complex web of interactions may explain the diverse types of pathogenic Leptospira observed in this study. Our results suggest that domestic dogs are likely to play an important role in the cycling and transmission of Leptospira. Future studies in areas with complex ecoepidemiology will enable better parsing of the significance of genotypic, environmental, and host characteristics.

3.
PLoS One ; 17(10): e0276297, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36264921

RESUMO

Many vertebrate species undergo population fluctuations that may be random or regularly cyclic in nature. Vertebrate population cycles in northern latitudes are driven by both endogenous and exogenous factors. Suggested causes of mysterious disappearances documented for populations of the Neotropical, herd-forming, white-lipped peccary (Tayassu pecari, henceforth "WLP") include large-scale movements, overhunting, extreme floods, or disease outbreaks. By analyzing 43 disappearance events across the Neotropics and 88 years of commercial and subsistence harvest data for the Amazon, we show that WLP disappearances are widespread and occur regularly and at large spatiotemporal scales throughout the species' range. We present evidence that the disappearances represent 7-12-year troughs in 20-30-year WLP population cycles occurring synchronously at regional and perhaps continent-wide spatial scales as large as 10,000-5 million km2. This may represent the first documented case of natural population cyclicity in a Neotropical mammal. Because WLP populations often increase dramatically prior to a disappearance, we posit that their population cycles result from over-compensatory, density-dependent mortality. Our data also suggest that the increase phase of a WLP cycle is partly dependent on recolonization from proximal, unfragmented and undisturbed forests. This highlights the importance of very large, continuous natural areas that enable source-sink population dynamics and ensure re-colonization and local population persistence in time and space.


Assuntos
Artiodáctilos , Animais , Florestas , Mamíferos
4.
R Soc Open Sci ; 7(4): 190717, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32431857

RESUMO

The persistent high deforestation rate and fragmentation of the Amazon forests are the main threats to their biodiversity. To anticipate and mitigate these threats, it is important to understand and predict how species respond to the rapidly changing landscape. The short-eared dog Atelocynus microtis is the only Amazon-endemic canid and one of the most understudied wild dogs worldwide. We investigated short-eared dog habitat associations on two spatial scales. First, we used the largest record database ever compiled for short-eared dogs in combination with species distribution models to map species habitat suitability, estimate its distribution range and predict shifts in species distribution in response to predicted deforestation across the entire Amazon (regional scale). Second, we used systematic camera trap surveys and occupancy models to investigate how forest cover and forest fragmentation affect the space use of this species in the Southern Brazilian Amazon (local scale). Species distribution models suggested that the short-eared dog potentially occurs over an extensive and continuous area, through most of the Amazon region south of the Amazon River. However, approximately 30% of the short-eared dog's current distribution is expected to be lost or suffer sharp declines in habitat suitability by 2027 (within three generations) due to forest loss. This proportion might reach 40% of the species distribution in unprotected areas and exceed 60% in some interfluves (i.e. portions of land separated by large rivers) of the Amazon basin. Our local-scale analysis indicated that the presence of forest positively affected short-eared dog space use, while the density of forest edges had a negative effect. Beyond shedding light on the ecology of the short-eared dog and refining its distribution range, our results stress that forest loss poses a serious threat to the conservation of the species in a short time frame. Hence, we propose a re-assessment of the short-eared dog's current IUCN Red List status (Near Threatened) based on findings presented here. Our study exemplifies how data can be integrated across sources and modelling procedures to improve our knowledge of relatively understudied species.

5.
PLoS One ; 13(2): e0192346, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29489855

RESUMO

Although the Andes have long been occupied by people, habitat loss, fragmentation through deforestation, and other human activities such as introduction of invasive species have increased drastically during the past century. The Ecuadorian Andes are considered a biodiversity hotspot. However, the fauna and threats to the region are poorly studied, and understanding of factors that shape the distribution of species in habitats disturbed by human activities is needed to identify and mitigate region-wide threats to wildlife. We evaluated factors associated with patterns of occurrence of Andean carnivores in landscapes of the northern Ecuadorian Andes, particularly habitat loss, fragmentation, and occupancy of domestic dogs, and determined whether thresholds occurred for these factors beyond which carnivore occurrence declined markedly. Five study areas (each 20 x 20 km) were surveyed with a total effort of 2,800 camera trap nights. Occupancies of four of the eight carnivores known from the region were best predicted by occupancy of domestic dogs rather than measures of habitat loss and fragmentation [Andean fox (Pseudalopex culpaeus), puma (Puma concolor), striped hog-nosed skunk (Conepatus semistriatus), and Andean bear (Tremarctos ornatus)]. The two largest carnivores, puma and Andean bear, demonstrated significant threshold responses to the presence of domestic dogs at two sites. Four smaller carnivores were recorded too infrequently to model occupancy, and at least two of these species appear to be in decline. The magnitude of domestic dog impacts on native species in tropical areas like the Ecuadorian Andes currently are not recognized. Results of our study indicate that small and large carnivores are in urgent need of conservation and clearly point to dogs as a significant threat to a broad range of native species.


Assuntos
Animais Domésticos , Carnívoros , Cães , Animais , Equador
6.
PLoS One ; 11(3): e0151827, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26986004

RESUMO

The Andean Condor (Vultur gryphus) in Ecuador is classified as Critically Endangered. Before 2015, standardized and systematic estimates of geographic distribution, population size and structure were not available for this species, hampering the assessment of its current status and hindering the design and implementation of effective conservation actions. In this study, we performed the first quantitative assessment of geographic distribution, population size and population viability of Andean Condor in Ecuador. We used a methodological approach that included an ecological niche model to study geographic distribution, a simultaneous survey of 70 roosting sites to estimate population size and a population viability analysis (PVA) for the next 100 years. Geographic distribution in the form of extent of occurrence was 49 725 km2. During a two-day census, 93 Andean Condors were recorded and a population of 94 to 102 individuals was estimated. In this population, adult-to-immature ratio was 1:0.5. In the modeled PVA scenarios, the probability of extinction, mean time to extinction and minimum population size varied from zero to 100%, 63 years and 193 individuals, respectively. Habitat loss is the greatest threat to the conservation of Andean Condor populations in Ecuador. Population size reduction in scenarios that included habitat loss began within the first 15 years of this threat. Population reinforcement had no effects on the recovery of Andean Condor populations given the current status of the species in Ecuador. The population size estimate presented in this study is the lower than those reported previously in other countries where the species occur. The inferences derived from the population viability analysis have implications for Condor management in Ecuador. This study highlights the need to redirect efforts from captive breeding and population reinforcement to habitat conservation.


Assuntos
Distribuição Animal , Aves , Ecossistema , Espécies em Perigo de Extinção , Animais , Equador , Densidade Demográfica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...